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Volkow ND, Michaelides M, Baler R. The Neuroscience of Drug Reward and Addic-
tion. Physiol Rev 99: 2115–2140, 2019. Published September 11, 2019; doi:10.
1152/physrev.00014.2018.—Drug consumption is driven by a drug’s pharmacolog-
ical effects, which are experienced as rewarding, and is influenced by genetic, devel-
opmental, and psychosocial factors that mediate drug accessibility, norms, and social

support systems or lack thereof. The reinforcing effects of drugs mostly depend on dopamine
signaling in the nucleus accumbens, and chronic drug exposure triggers glutamatergic-mediated
neuroadaptations in dopamine striato-thalamo-cortical (predominantly in prefrontal cortical regions
including orbitofrontal cortex and anterior cingulate cortex) and limbic pathways (amygdala and
hippocampus) that, in vulnerable individuals, can result in addiction. In parallel, changes in the
extended amygdala result in negative emotional states that perpetuate drug taking as an attempt
to temporarily alleviate them. Counterintuitively, in the addicted person, the actual drug consump-
tion is associated with an attenuated dopamine increase in brain reward regions, which might
contribute to drug-taking behavior to compensate for the difference between the magnitude of the
expected reward triggered by the conditioning to drug cues and the actual experience of it.
Combined, these effects result in an enhanced motivation to “seek the drug” (energized by dopa-
mine increases triggered by drug cues) and an impaired prefrontal top-down self-regulation that
favors compulsive drug-taking against the backdrop of negative emotionality and an enhanced
interoceptive awareness of “drug hunger.” Treatment interventions intended to reverse these
neuroadaptations show promise as therapeutic approaches for addiction.
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I. INTRODUCTION

There is an inherent need in all sentient beings to seek out
positive and avoid negative stimuli, a universal formula that
has evolved to maximize adaptive fitness and the chances of
survival. The extent to which strategies for attaining or
avoiding such stimuli are successful depends on complex
interactions between an organism and its environment that
are orchestrated by the nervous system. Neurobiology em-
ploys processes refined during evolution, such as homeostasis,
sensory perception, associative and nonassociative learning,
emotions, and decision-making, to shape an organism’s re-
sponse to environmental stimuli and to maximize its ability to
harness their predictable features and to adapt to unpredict-
able ones. Although types of stimuli vary from one species to
another, there are striking similarities among different species,

Neuroscience research has revealed that addiction is a
chronic, relapsing disease of the brain triggered by repeated
exposure to drugs in those who are vulnerable because of
genetics and developmental or adverse social exposures. As
a result, the reward circuit’s capacity to respond to reward
and motivate actions that are not drug related is decreased,
the sensitivity of the emotional circuits to stress is enhanced,
and the capacity to self-regulate is impaired. The result is
compulsive drug seeking and drug taking despite severe
harms and an inability to control the strong urges to con-
sume the drug, even when there is a strong desire to quit.
The changes in the brain responsible for these maladaptive
behaviors can persist for months or even years after drug
discontinuation but are amenable to treatment. Treatment
should be aimed at improving self-regulation; helping to con-
trol craving and the emergence of distressing emotions,
including depression and anxiety; and improving the sensitiv-
ity to alternative reinforcers. Addiction is a chronic disease,
so its treatment should follow a sustained model of interven-
tion, the intensity of which should be adjusted to the stage of
the disease. Treatment should also be personalized and cal-
ibrated to the severity of the addiction, the presence of
comorbidities, and the individual’s support systems. Cru-
cially, addiction can be prevented, and both universal as well
as tailored strategies can significantly reduce substance use
disorder in the individual and in a population.
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in their responses to positive (e.g., food and sex) and negative
(e.g., pain and environmental threats) stimuli. This common
representation, which reflects the critical role of such stimuli in
boosting the odds of survival, is often reflected at the neurobi-
ological level, whereby different species tap into similar brain
structural, neurochemical, and functional strategies to tackle
similar problems (77, 284).

Ingenuity has enabled humans to extract and refine highly
reinforcing stimuli against which naturally occurring rein-
forcers cannot easily compete. The most notable example is
our ability to purify and deliver drugs (e.g., high alcohol
content beverages, cigarettes, syringes for drug injections,
and more recently vaping devices) along with advances in
chemistry that ushered new psychoactive compounds of
unprecedented potency (e.g., synthetic opioids, cannabi-
noids, and stimulants). Access to these highly reinforcing
drugs, when combined with promotive environments (e.g.,
the ubiquity of legal and illegal drugs, chronic stress, peer
pressure) and individual vulnerabilities (e.g., preexisting men-
tal illness, chronic pain, genetic predisposition, gender, young
age), influence drug experimentation as well as the risk and
prevalence of substance use disorders (SUD). The latest exam-
ple of the potential consequences of such drug-promotive en-
vironments is the rising tide of opioid fatalities, initially fueled
by misuse of prescription opioid analgesics, then by heroin,
and now exacerbated by the misuse of very potent synthetic
opioids such as fentanyl. The current opioid epidemic [esti-
mated to have led to over 71,000 opioid overdose fatalities in
2017 (57) and with no signs of abating in 2018 (2)], combined
with the high background mortality rate from alcohol
(~88,000 annual deaths) (56, 310) and tobacco (�480,000
annual deaths) (58) use, highlights the devastating impact of
drugs and addiction in our society.

The application of neuroscientific technologies in humans
and laboratory animals has led to remarkable advances in
our understanding of the neurobiological underpinnings of
drug reinforcement and addiction. As a result, addiction,
which has been viewed historically as a “moral deficiency,”
is being increasingly regarded as a chronic relapsing disor-
der characterized by an urge to consume drugs and by the
progressive loss of control over, and escalation in, drug
intake despite repeated (unsuccessful) attempts to resist do-
ing it (334). It is also recognized that addiction emerges in
the context of complex biopsychosocial interactions be-
tween the pharmacological effects of a drug, individual vul-
nerabilities (e.g., genetics/epigenetics, developmental stage,
existing pathology), inadequate social connectivity, and
other sociocultural factors (e.g., normative behaviors re-
garding drug use, affordability and availability of drugs,
legal status). Research on the mechanisms underlying the
modulatory influence of adverse social environments, child-
hood experiences, and genetic variability is fundamental for
helping us understand why not everyone who is exposed
regularly to a drug becomes addicted (54, 231), and why

some addicted individuals can recover while others do not
(47, 210, 287).

II. DRUG REWARD

Dopamine (DA) lies at the center of drug reward (85, 182).
Every drug with addiction potential increases DA, either
through direct or indirect effects on DA neurons in the
ventral tegmental area (VTA) with the consequent release of
DA in the nucleus accumbens (NAc) (357) (FIGURE 1).
Drugs of abuse increase DA through their initial action on
different molecular targets and, depending on their phar-
macological effects (TABLE 1), also engage additional neu-
rotransmitters. Some of these, like the endogenous opioids
(BOX 1) or the endogenous cannabinoids (BOX 2) (FIGURE
2), also contribute to the reinforcing effects of drugs
through modulation of hedonic responses or inhibition of
negative affective states (232). The significance of non-do-

BOX 1. The endogenous opioid system
The endogenous opioid system modulates the mesolimbic DA
system (107, 328) and is implicated in assigning hedonic val-
ues to rewards and in integrating reward�related information to
guide decision�making and execution of goal�directed behaviors
(193). It consists of endogenous opioid peptides and their cog-
nate receptors, namely, �-endorphins, enkephalins, and dynor-
phins, which signal preferentially through mu (MOR), delta
(DOR), and kappa (KOR) opioid receptors, respectively. MOR
are responsible for the rewarding effects of opioids and for
analgesia, DOR are implicated in analgesia and anxiolysis, while
KOR are implicated in the dysphorigenic responses associated
with addiction (194) and in stress-induced relapse (136). MOR
in the VTA and NAc, as well as in the basolateral amygdala, are
implicated in opioids’ rewarding effects (FIGURES 1 AND 2).
The opioid system also modulates mood, with stimulation of
MOR and KOR having predominantly antidepressant and dys-
phorigenic effects, respectively (250).

BOX 2. The endogenous cannabinoid system
The endogenous cannabinoid system (ECS) modulates other
neurotransmitter systems including GABA, glutamate, and DA
in key areas along the mesolimbic circuitry (209, 348). The
ECS consists of endogenous cannabinoids [anandamide (AEA)
and 2-arachidonoylglycerol (2-AG)] and their cognate receptors
(CB1R and CB2R) (337). Recent studies corroborate the func-
tional importance of the ECS in modulating reward circuitry
(252). For example, activation of CB1R in cortical glutamater-
gic afferents inhibited DA release in the NAc and blunted re-
ward-driven behaviors (225). In the VTA, 2-AG, and to a lesser
extent AEA, released from DA neurons, retrogradely activate
CB1R at VTA GABA inputs from GABAergic interneurons (FIG-
URE 2), or from pallidum or rostromedial tegmental nuclei
terminals (252, 271). 2-AG also activates CB1Rs at VTA glu-
tamate inputs arising from cortex (252). Cannabinoids also act
in the NAc where medium spiny neurons (MSNs) are modulated
by CB1R expressing GABAergic interneurons, and by CB1R
expressing glutamate terminals originating from amygdala, hip-
pocampus, and prefrontal cortex (3, 79, 152).
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paminergic influences on reward processing has not been as
extensively investigated as DA’s but should not be underes-
timated. In fact, dopamine-deficient (DD) mice showed
conditioned place preference for cocaine [also shown for
morphine in naive rats (157)], which appeared to be medi-
ated by serotonin through a mechanism that involves DA
neurons, presumably through their release of glutamate or
neuropeptides like cholecystokinin and neurotensin (156).
Also, studies in genetically engineered mice have shown that
the mu opioid receptor (MOR) is not only the main target
for heroin and other opioid drugs, but is also essential for
the rewarding properties of nonopioid drugs, like alcohol,
cocaine, and nicotine (62, 153).

In turn, repeated dopaminergic stimulation from drug use
induces neuroadaptations in multiple neurotransmitter sys-
tems, including the glutamatergic system, which enhances
neuronal excitability and modulates neuroplasticity (286);
the GABAergic system, which inhibits action potential
transmission (168); and the opioid, endocannabinoid (232,
337, 351), cholinergic (78, 204), serotonin (36, 215), and

noradrenergic (109) systems, which modulate affective, he-
donic, and aversive circuits in the brain.

Midbrain DA neurons and their projections into the NAc
and the dorsal striatum and their GABAergic outputs are
implicated in motivating and sustaining reinforced behav-
iors (including towards food and drugs) but also in avoiding
aversive stimuli or states (262). DA neurons in the VTA
project to the NAc, which is a central hub of the reward
circuit and a major driver of goal-directed actions that are
sensitive to the current salience (estimated value) of an as-
sociated goal (281). Meanwhile, DA neurons in the sub-
stantia nigra (SN) project to the dorsal striatum and trans-
late recurrent reward signals into habitual actions that be-
come increasingly insensitive to actual or updated goal
values and are selected instead based on prior experience
with the reinforcement associated with that action. The
repeated reward-associated behavior, over time, can even-
tually result in the emergence of habits (103), as the dorsal
striatum gradually takes over from the ventral striatum.
Additionally, following repeated drug exposures, habits

ECB

ECB

NAcVTA

Opioid
peptides

Opioid
peptides

GABA

Nicotine
Alcohol

Stimulants

BLA

CTX

Glutamate

Glutamate

MSN

Alcohol

Alcohol

Nicotine

Opiates
CBs

CBs

CBs

DA

GABA

Opiates

Opiates

Hypothalamus

FIGURE 1. Schematic representation of key target sites for various drugs of abuse across the reward
circuitry. Ventral tegmental area (VTA) dopamine (DA)ergic neurons project to forebrain targets such as the
basolateral amygdala (BLA), medial prefrontal area of the cortex (CTX) or mPFC, and nucleus accumbens
(NAc). These neurons receive excitatory synaptic inputs from the mPFC (but also from lateral hypothalamus
and pedunculopontine tegmental nucleus/dorsolateral tegmental nucleus; not shown). GABAergic neurons in
the VTA target neighboring DAergic neurons as well as projecting to the mPFC and NAc (other inhibitory inputs
to these DAergic neurons are likely to arise from extended amygdala output structures; not shown). GABAergic
medium spiny neurons (MSNs) in the NAc, which project to either the globus pallidus externus/ventral pallidum
(VP) predominantly via D2R-expressing but also D1R-expressing neurons or to the VTA/SN via D1R-expressing
neurons, receive dopaminergic input from the VTA. They also receive excitatory inputs from the mPFC and the
basolateral amygdala (BLA) (but also from the hippocampus and thalamus). The activity of MSNs is modulated
by both cholinergic and fast-spiking GABAergic interneurons (not shown) (312). Drugs of abuse, despite
diverse initial actions, produce some common effects on the VTA and NAc. Stimulants directly increase
dopaminergic transmission in the NAc. Opiates increase DA indirectly by inhibiting GABAergic interneurons in
the VTA, disinhibiting them and by stimulating mu opioid receptors (MOR) on NAc neurons (244). Nicotine
stimulates DA neuron firing by its effects on ionotropic (nicotinic) acetylcholine receptors (314). Alcohol,
among other effects, increases the firing of VTA DA neurons projecting to NAc via their disinhibition through
the inhibition of GABA neurons (238). Cannabinoids (CBs) disrupt the normal endocannabinoid (ECB) signaling–
from DAergic neurons on nearby glutamatergic (via retrograde suppression of excitation) and GABAergic (via
retrograde suppression of inhibition) terminals–that is responsible for fine-tuning the activity of mesolimbic
dopamine projections (31). [Modified from Nestler (244), with permission from Springer Nature.]
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might also result from a reduction in inputs from prefrontal
cortex (PFC) into striatum that disrupt the control over
action selection (269). However, the notion that “habit”
formation is necessary for the establishment of addiction
was recently questioned by a study that showed that rodents
who had to solve an original problem before gaining access
to cocaine did not transfer behavioral control from ventral
to dorsal striatum even though they expressed addiction-
like behaviors (300). The results from this study are consis-
tent with observations that addicted individuals can display
very creative solutions to procure the drug, while falling
into ritualistic behaviors once they are consuming them.
This indicates that behaviors in addiction are likely a com-
plex combination of adaptive (mostly to procure the drug)
and automatic stimulus responding.

VTA DA neurons also project to amygdala and hippocam-
pus, which mediate emotional and memory associations,
and to PFC regions, which mediate salience attribution and
self-regulation, all of which participate in the reinforcing
and conditioning that follow chronic drug consumption.

DA neurons in VTA and SN are influenced by projections
from multiple brain areas that control their tonic and phasic
firing (112). Recent evidence points to significant diversity
within the population of VTA DA neurons with respect to
their afferent and efferent connectivity (235), their co-re-
lease of GABA or glutamate (or both), and the presynaptic
receptors expressed in their terminals, which differentially
modulate DA release in the presence of other neurotransmit-
ters like GABA or acetylcholine (228). Diversity is also appar-
ent in the cytoarchitectonic, neurochemical, and electrophysi-
ological features of VTA DA neurons as well as in their sensi-
tivity to rewarding versus aversive stimuli (159). Generally,
tonic firing of DA neurons (1–8 Hz) sets the background do-
paminergic tone, which is sufficient to stimulate the high-af-
finity DA D2 receptors (D2R), whereas phasic firing (�500
ms; �15 Hz) encodes responses to salient stimuli (rewarding,
unexpected, novel, aversive) and results in higher DA levels
(120) that are able to stimulate the low-affinity DA D1 recep-
tors (D1R). Thus a drug like cocaine that blocks DA transport
back into the terminal, promoting its accumulation in the ex-
tracellular space, while also increasing the frequency of DA

Table 1. Pharmacological targets of main classes of drugs of abuse

Drug Class NT Mediators Mechanism

Opioids MOR ¡ GABA2 ¡ DA1 Opioids, like morphine, heroin, or fentanyl, are agonists at MOR (214). Opioid
stimulation of MOR in the VTA increases striatal DA release.

Alcohol EtOH ¡ MOR1, NMDA2,
DA1, GABA1, ECS1

Unlike most addictive drugs that target specific receptors and transporters,
EtOH affects a wide range of targets and indirectly increases DA in NAc
(354).

Nicotine nAChRs ¡ DA1 Nicotine’s interaction with specific nAChRs (i.e., �4�2) leads to NAc DA
release directly by increasing neuronal activity in VTA DA neurons (13, 24)
or indirectly by activating modulatory (i.e., GABA or Glu) neurons in VTA
(76, 114).

Stimulants DAT/VMAT2 ¡ DA1 Amphetamines block DAT and the VMAT2 (11, 96, 111), which increase
synaptic levels of extracellular DA by DAT reversal and depletion of
vesicular DA stores, which promotes DA release. Cocaine and
methylphenidate block DAT inhibiting DA reuptake, thus increasing DA in
NAc (171).

Cannabis THC ¡ Glu/GABA ¡
DA12

THC activation of CB1 receptors regulates the presynaptic release of both
GABA and glutamate, influencing the activity states of the mesolimbic DA
system (92, 299) (see FIGURE 1)

Classic hallucinogens 5-HT2ARs � DA1;
5-HT2CRs � DA2

Indolamines (e.g., psilocybin, LSD, Mescaline) that display high-affinity agonist
activity at serotonin 5-HT2 G protein-coupled receptor subtypes (5-HT2A,
5-HT2B, and 5-HT2C) (51). These drugs do not trigger compulsive drug
taking and are therefore not considered addictive. Instead, these drugs are
predominantly used to alter mental state.

Inhalants Multiple agents and targets,
including volatile
substances like toluene,
which modulates
NMDA2, 5-HT31, Gly1,
GABAA1, nACh2, and
DA1 (39, 119, 249)

Abused inhalants (other than nitrites) have a wide range of effects on
neurotransmitter release and receptors, with a few similar actions as
those of benzodiazepines, alcohol, and barbiturates (15) and have been
shown to enhance striatal DA release and have direct reinforcing effects
(166).

Benzodiazepines and
barbiturates

GABA1 � DA1 Benzodiazepines and barbiturates enhance GABA by increasing the frequency
or the duration of the chloride ion channel opening at the GABAA receptor,
respectively. Both drugs can increase the firing rate of DA neurons in VTA
through disinhibition (86, 318).

MOR, mu opioid receptors; VTA, ventral tegmental area; DA, dopamine; NMDA, N-methyl-D-aspartate; ECS, endogenous cannabinoid system;
NAc, nucleus accumbens; nAChRs, nicotinic acetylcholine receptors; DAT, dopamine transporter; VMAT2, vesicular monoamine transporter
2; THC, tetrahydrocannabinol.
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release events in the NAc (9), triggers high DA levels that can
activate both D1R and D2R.

The traditional model of the direct and indirect pathways in
the dorsal striatum, with their opposing effects on facilitat-
ing or inhibiting movement, respectively, has been applied
to reward processing by the NAc. Based on this model, NAc
D1R-expressing medium spiny neurons (D1R-MSNs) in the
direct pathway (midbrain projecting) are proposed to un-
derlie reward and goal directed behaviors, whereas D2R-
expressing MSNs (D2R-MSNs) in the indirect (ventral pal-
lidum projecting) are proposed to be associated with avoid-
ance behavior (155). However, recent studies question such
a clear segregation of function and anatomic projections for
both the dorsal and ventral striatum (187). For example,
studies have shown that in the dorsal striatum both D1R-
MSNs (direct) and D2R-MSNs (indirect) are activated
when initiating an action (75). Moreover, in the NAc, these
pathways are less segregated than in the dorsal striatum and
D1R-MSNs project directly both to the midbrain and to the
ventral pallidum, which is modulated both by D1R-MSNs
and D2R-MSNs (277), and the D2R-MSNs that project to
ventral pallidum directly disinhibit the thalamus (186). In
the NAc, studies in rodents reported the existence of a sub-
population of neurons that coexpress D1R and D2R (145)
and form a D1R-D2R complex that when activated inhibits
basal natural and cocaine reward (146).

In the VTA, spontaneous firing of DA neurons sets tonic DA
levels, which stimulate mainly D2R (also D3R, which have
high affinity for DA) in NAc, upon which phasic DA firing can
be superimposed resulting in higher DA levels that addition-
ally stimulate D1R (262). Although an unexpected reward
triggers phasic DA firing, its repeated presentation transforms
it into an expected reward and causes the phasic firing of the
DA neuron to occur upon exposure to the predictive cue (mak-
ing it conditioned). In contrast, there is a pause in DA neuron
firing when an expected reward does not materialize (making
it discordant). In this way, when an outcome differs from what
is expected, DA signals a “reward prediction error” regardless
of its positive or negative valence, that recent studies suggest
may reflect not just its scalar reward value but additional di-
mensions of the expected outcome, such as its characteristics
or presentation sequence (189). Drug cues trigger phasic DA
firing, which in the NAc binds to both D1R-expressing MSNs,
where DA is stimulatory (increases cAMP and intracellular Ca
signaling), and D2R-expressing MSNs where DA is inhibitory
(decreases cAMP and intracellular Ca signaling) (213, 245,
297, 298), sparking the motivation to initiate reward-directed
behaviors (346). Although it was believed that aversive stimuli
or their cues, by reducing tonic activity of DA neurons and DA
release in NAc, lowered D2R-inhibition of indirect pathway
MSNs, leading to avoidance behavior, this, as discussed
above, is now being questioned. Indeed, some DA neurons are
activated, not inhibited by aversive stimuli (352), but further
research is needed to characterize their projections into NAc

and other brain regions (186). Additionally, both tonic and
phasic firing stimulate the high-affinity D3R, which are highly
expressed in NAc, where they colocalize with D1R potentiat-
ing their signaling (108) and possibly modulating drug reward
and conditioning (117). The NAc also expresses D5R, which
colocalize with D1R in MSNs (239), are also expressed in
interneurons, and appear to play distinct roles in neuroplastic-
ity relative to D1R (59). The D4R is also expressed in the NAc,
and genetic studies have implicated its encoding gene (DRD4)
in addiction vulnerability (255), whereas preclinical studies
have shown that it modulates the pharmacological effects of
drugs. However, it is clear that the functional differences be-
tween DA receptors, their colocalization, and interactions in
NAc (including that between D3R and D5R, which has been
minimally investigated) require further investigation.

Phasic DA firing and stimulation of D1R are needed for
drug reward and for eliciting conditioned associations. On
the other hand, DA stimulation of D2R signaling is associ-
ated with motivational drive (306) but, depending on the
circumstances, can interfere with the reinforcing effects of
drugs such as with exposure to multiple alternative rein-
forcers. Notably, positive reinforcement and maximal re-
ward occur when both D1R and D2R are simultaneously
stimulated in the NAc, but additional studies are needed to
disentangle how each receptor subtype contributes to the
overall effect (311).

III. DOPAMINE AND NEUROPLASTICITY

Drugs, via excessive and repeated dopaminergic stimulation,
induce persistent neuroplastic adaptations in midbrain DA
neurons and in their projections into NAc and also into dorsal
striatum that are believed to underlie conditioning along with
the enhanced incentive saliency to drug cues and behavioral
inflexibility (128, 262, 293). When conditioning is established,
DA neurons fire when exposed to the drug-predictive cues that
precede the drug’s arrival, in effect predicting an imminent
reward. Conditioning can be instantiated for many types of
cues, including places and people associated with the drug
experience, or mental states that predominated at the time
when the drug was being consumed (depressed, bored, ex-
cited, stressed, etc.), all of which can subsequently awaken, by
themselves, the motivation to seek the drug (289, 343). These
neuroadaptations prominently involve glutamatergic inputs
onto DA neurons in VTA and into MSNs in NAc setting up
the stage for the respective behavioral changes in reward re-
sponsivity and habituation that characterize addiction, includ-
ing a persistent risk of relapse that makes treatment so chal-
lenging (176, 290, 359). Some of the key drug-induced adap-
tations are similar to synaptic changes associated with learning
including changes in dendritic morphology, ionotropic gluta-
mate receptors (predominantly AMPA and NMDA receptors)
that result in long-term potentiation (LTP) and long-term de-
pression (LTD) (138, 176). Synaptic strength is modulated
presynaptically through the regulation of glutamate release
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and postsynaptically by the insertion or removal of transmem-
brane glutamate ionotropic receptors (NMDA and AMPA)
and by changes in their subunit composition, which modifies
their efficacy. Glutamate release in NAc is decreased by acti-
vation of metabotropic glutamate receptors mGluA2/3 (362),
adenosine A1 receptors (37), D2R (154), or cannabinoid
CB1R (272, 316). Postsynaptically, trafficking of AMPA and
NMDA receptors is regulated by D1R activation, which pro-
mote AMPA surface expression. The insertion of high cal-
cium-permeable AMPA receptors that lack the GluA2 subunit
is necessary for the expression of incubation of cocaine craving
(106). Increases in NMDA receptors containing the GluN2B
subunit have also been associated with neuroplasticity after
chronic cocaine or heroin (160, 294, 349). Postsynaptic
mGluR1 produce an LTD that reverses cocaine-induced in-
creases of high calcium-permeable AMPA receptors in VTA
(220) and in NAc where it reduced cue-induced cocaine crav-
ing (211).

Morphological changes occur in parallel to the strengthen-
ing of excitatory synapses, which is associated with larger
synapses, whereas weakening results in smaller synapses
and reduced dendritic spine density. In addition, recent
studies in transgenic mice indicate that chronic administra-
tion of cocaine is also associated with specific structural

plasticity in dopaminergic boutons in the NAc shell (91)
(FIGURE 3).

However, our understanding of drug-induced neuroplas-
ticity is evolving. For example, with the use of a modified
reinstatement protocol, it was shown that cocaine-in-
duced neuroplastic changes in dendritic spine morphol-
ogy and AMPA/NMDA ratios were temporarily reversed
by cocaine use (308). Also, while most glutamatergic
synapses contain both AMPA and NMDA receptors, a
small number of so-called silent (also referred to as
“AMPA silent” or immature) synapses express NMDA
receptors exclusively (203), and have been associated
with chronic stress (315) and with addictive and neuro-
degenerative disorders (144). For example, silent syn-
apses are produced in response to cocaine (in NAc) (89)
and alcohol (in dentate gyrus) (23). However, these syn-
apses do not contribute significantly to stimulus (i.e.,
drug) evoked excitatory postsynaptic currents. Thus it
has been hypothesized that, by recapitulating some key
aspects of the immature yet more “teachable” developing
brain (89), silent synapses might provide a “metaplastic-
ity” signal and prime the circuitry for any needed subse-
quent plastic changes (e.g., LTP or LTD) (217).
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Furthermore, the identification of Maged1, implicated in the
modulation of dendritic spine density and learning in the hip-
pocampus (363), as a gene whose expression in PFC is essen-
tial for both extracellular DA release in NAc and behavioral
sensitization to cocaine (82), illustrates another molecular pro-
cess involved both in learning and in drug-induced neuroplas-
ticity in PFC and NAc. Similarly, synapses from hippocampal
glutamatergic terminals into the NAc were shown to also un-
dergo LTP, which was necessary for the formation of reward-
related contextual memories, although these neuroplastic
changes did not appear to be DA-dependent (196).

There is also increasing evidence that in addition to Heb-
bian neuroplasticity, some forms of drug-induced neuro-
plasticity in NAc are homeostatic and interact with Heb-
bian neuroplastic changes (90, 161, 172, 290). For exam-
ple, increases in synaptic strength following repeated
cocaine exposure trigger homeostatic changes in membrane
excitability in MSNs in the NAc, which appear to contrib-
ute to incubation of cocaine craving (349).

IV. NEUROCIRCUITRY OF ADDICTION

The percentage of laboratory animals that show addictive-
like behaviors, or of people that become addicted to a drug
after repeated exposure, varies as a function of the drug,
being higher for drugs like heroin or methamphetamine and
lower for drugs like alcohol or cannabis. For example, only
between 15 and 20% of rats chronically exposed to cocaine

will continue to compulsively prefer cocaine over other re-
warding options (52), whereas the percentage of heroin-
preferring rats can go as high as 50% under similar exper-
imental conditions (198). These percentages, however, do
vary across different rat strains, highlighting the role of
genetics in modulating drugs’ effects. Epidemiological data
are generally consistent with this picture. According to the
best available estimates, the odds, in lifetime drug users, of
ever becoming addicted to alcohol, cannabis, cocaine, or
opioids (heroin) are ~1.5, 9, 17, and 23%, respectively (7).
As of now, it is not clear what determines the transition
from drug experimentation to addiction, which emerges
when individuals lose their ability to overcome the strong
urge to take the drug despite a conscious awareness of not
wanting to do so and the recognition of their potentially
catastrophic consequences. However, we do know this
transition is associated with measurable disruptions in sev-
eral brain circuits including those involved with condition-
ing, reward sensitivity, incentive motivation, self-monitor-
ing/regulation, mood, and interoception. In this review, we
use the term addiction in correspondence with the dimen-
sional definition of moderate to severe SUD as per the Di-
agnostic and Statistical Manual of Mental Disorders
(DSM-5) (TABLE 2).

A. Conditioning

A key process that initiates the transition into addiction and
helps perpetuate it is the consolidation of conditioning to

FIGURE 2. Schematic simplified cartoon showing some of the indirect modulatory effects of midbrain (ventral tegmental area, VTA) opioid and
endocannabinoid signals on dopaminergic transmission in nucleus accumbens (NAc). Reward-related stimuli conveyed through glutamatergic
afferents (green) promote burst firing of dopamine (DA) neurons (yellow) mainly driven by ionotropic glutamate receptor (iGluR) binding activation
at the dopaminergic cell. The level of activation is normally kept in check by GABAergic counterbalancing inputs (pink), but also by direct inhibitory
GABAergic input inhibiting presynaptic glutamate release (66). Endogenous [released from opioidergic neurons (light blue), mostly projecting
from the hypothalamus] or exogenous (natural or synthetic opioid like molecules) opioids activate endogenous mu opioid receptors (MOR) on
GABAergic interneurons. The MOR is coupled to inhibitory G proteins, whose activation (by an endogenous peptide like endorphin or exogenous
agonists like morphine and fentanyl) leads to a dissociation between the G� and G�� subunits and the activation of intracellular effector pathways.
One such pathway leads to the inhibition of GABA release as a result of increased conduction of potassium ions, which hyperpolarizes the cell
making it less responsive to depolarizing inputs and inhibiting calcium influx (123). In addition, activation of MOR increases mitogen-activated
protein kinase (MAPK) signaling while their phosphorylation activates the arrestin pathway (5), which has the ability to desensitize, activate, and
control the trafficking of G protein-coupled receptors (GPCR) (140). A drop in GABAergic tone causes a net disinhibition of the neighboring
dopaminergic neuron and the release of excess dopamine (black dots) onto direct and indirect medium spiny neurons [pink medium spiny neuron
(MSN)], which reinforces the euphorigenic effects of opioids. Ionotropic GluR-mediated activation of the DA neuron leads to Ca2� influx (via
voltage-gated calcium channels), which is either facilitated or hampered in D1R vs D2R expressing MSN populations, respectively (317) (inset),
leading to their differential roles in plasticity. At the same time, the Ca2� influx, combined with activation of mGluA1/5, triggers the “on demand”
production of 2-arachidonoylglycerol (2-AG) from diacylglycerol (DAG) [or anandamide (AEA) from N-acyl-phosphatidylethanolamines (NAPE)].
Retrograde 2-AG transmission through CB1 receptor binding on monoacylglycerol lipase (MAGL) containing afferent (GABA and Glu) neurons
has the net effect of disinhibiting dopamine neurons and facilitating phasic DA release (63). This is because cannabinoids (e.g., tetrahydrocan-
nabinol, 2-AG) operate as full agonists at GABA terminals [that display a high CB1R to vesicles ratio (188)] but as partial agonists at Glu terminals
[where the CB1R-to-vesicles ratio is much lower (295, 296)]. As shown, AEA is assumed to be retrograde in spite of data showing that FAAH
is predominately postsynaptic while NAPE PLD is presynaptic. The true nature of AEA neurotransmission remains unclear partly because there
are other pathways for AEA synthesis. In the NAc, GABAergic projections, sent by the VTA, also synapse onto cholinergic interneurons (dark
gray), thus inhibiting their excitatory input onto DA terminals. Activation of either CB1 or MOR on these GABA neurons can stimulate DA
terminals (independently of VTA DA neuron activation) by disinhibiting ACh release while activation of these receptors, which are also expressed
on ACh interneurons, could in theory have the opposite effect on DA levels in the accumbens (351). GABAergic and glutamatergic terminals in
the NAc also have the capacity to modulate accumbal DA activity onto MSNs directly. Since these neurons also express MOR [but some also
CB1R (226, 361)], their activation on GABA inputs could enhance DA release, while their inhibitory effects on glutamatergic inputs could reduce
accumbal release of DA.
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the drug. As addiction develops there is an expansion in the
number of stimuli that become experientially linked (con-
ditioned) to the drug, and thus a greater likelihood of being
exposed to a drug-predictive cue. Any encounter with these
cues can trigger bursts of DA in the NAc (259) and lead to
further consolidation in dorsal striatum; this directs the
attention to the drug-predictive cue and engenders the mo-
tivation to procure the drug. As a result, the motivational
drive toward the drug now occurs before the drug is con-
sumed and is triggered by the exposure to the drug-predic-
tive cue. Upon drug consumption, the continued DA stim-
ulation from the drug’s pharmacological effects promotes
continued ingestion while further strengthening condi-
tioned learning, thus perpetuating the cycle of relapse and
drug-taking.

One of the changes believed to contribute to enhanced re-
activity to drug-predictive cues in addiction is the disrup-
tion of the balance between D1R and D2R signaling in the
ventral striatum. Overall, rodent studies provide support to

the notion that strengthening of D1R-MSNs in NAc en-
hances cocaine reward, whereas strengthening of D2R-
MSNs suppresses it (49, 208, 323). Similarly, a recent study
reported that cue-induced reinstatement was intensified by
either activating D1R-MSNs or reducing the activity of
D2R-MSNs (151). Combined, the studies suggest that the
motivation to take the drug in addiction is energized by
drug-predictive cues and by drug-induced transient DA-
induced stimulation of D1R (activating D1R-MSNs) con-
comitant to a weakening of signaling from D2R that is
insufficient to counterbalance D1R-MSNs, thus facilitating
compulsive intake. Using optical imaging in transgenic
mice, we showed that in the dorsal striatum of naive mice,
acute cocaine led to fast [Ca2�] increase in D1R-MSNs and
to progressive [Ca2�] decreases in D2R-MSNs, consistent
with DA stimulating D1R-MSNs and inhibiting D2R-
MSNs (213). In contrast, in mice chronically exposed to
cocaine, the [Ca2�] responses to acute cocaine were blunted
but to a significantly greater extent in D2R-MSNs than in
D1R-MSNs, unbalancing the relative signaling towards a
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FIGURE 3. Leading hypothesis of how a temporally coordinated cascade of drug-induced changes in synaptic
activity hijack multipurpose learning processes to engender maladaptive and persistent addictive behaviors.
VTA, ventral tegmental area; DA, dopamine; PFC, prefrontal cortex; Amy, amygdala; Hipp, hippocampus.
Bottom figures depict (from left to right) a heat map of genes upregulated (*) in the nucleus accumbens (NAc)
1 h after acute cocaine administration to naive animals (275); examples of such transient transcription and
epigenetic modulatory events include regulatory and signaling genes like fosB, �FosB, NF�B, CdK5, and MEF2.
[From Robison and Nestler (275), with permission from Springer Nature.] Drug-induced changes in neuronal
activity (e.g., changes in NMDA/AMPA receptor balance) lead to synaptic plasticity (e.g., LTP) in the reward
circuitry (169). [From Jones and Bonci (169), with permission from Elsevier.] Morphological and functional
changes, like increased dendritic spine density, which, if sustained, can lead to cytoskeletal and circuit
remodeling, a phenomenon that correlates with synaptic strength and the strength of drug-associated
memories in vivo, which, over a period of months and years, contributes to the orchestration and cementing
of stereotypical addictive behaviors. [From Nestler. Dialogues Clin Neurosci 15: 431–443, 2013.]
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predominance of D1R-MSNs over D2R-MSNs (251).
However, studies are needed to assess if similar changes
occur in NAc and their association with compulsive drug
taking, particularly since there is evidence that in the NAc
there is coexpression of D1R and D2R and of projections of
both D1R-MSNs and D2R-MSNs into ventral pallidum.

Unbalancing D1R over D2R signaling with repeated drug
exposure would favor cue-induced phasic DA firing and
D1R signaling (driving drug-seeking) while undermining
tonic DA firing and D2R signaling (which opposes prepo-
tent responses). Specifically, upregulation of the low-affin-
ity D1R would favor signaling from phasic DA responses,
while decreasing the sensitivity to tonic DA responses due to
a downregulation of the high-affinity D2R. In contrast, an
upregulation of D2R would enhance the sensitivity to tonic
DA release while attenuating phasic DA release via D2R
autoreceptor inhibition and might explain why D2R up-
regulation inhibits compulsive cocaine taking (323). Unbal-
ancing D1R over D2R would enhance the reinforcing val-
ues of drugs and drug-predictive cues while undermining
the capacity for behavioral control, facilitating impulsive
and compulsive drug consumption (213). In clinical studies,
the enhanced sensitivity to conditioned drug-predictive cues
has been associated with addiction severity (343) and with
worse clinical outcomes (68, 185). Thus a better under-
standing of the relationship between D1R and D2R dynam-
ics in NAc and dorsal striatum has significant translational
implications for addiction treatment. For example, a rodent
study that showed that optogenetic activation of glutama-
tergic inputs onto accumbal D2R-MSNs reduced cocaine
self-administration suggests that strengthening signaling
through D2R-MSNs could be beneficial for the treatment of
addiction (34).

B. Reward and Motivation

In parallel to the enhanced sensitivity to the expectation of
the drug’s rewarding effects (due to conditioning), there is a
reduced sensitivity of the DA reward circuit to the actual
consumption of the reward, which has been observed in
drug addicted individuals and interestingly also among
some obese individuals who display some phenotypic traits
consistent with “food addiction” (326). This reduced sen-
sitivity in drug-addicted individuals extends to non-drug
rewards with the concomitant decrease in their motiva-
tional value, which contributes to the lack of interest in
non-drug-associated activities characteristic of addiction.
Brain imaging studies of drug-addicted individuals have
helped characterize these adaptations by revealing de-
creased D2R expression and DA release in the striatum
(both dorsal and ventral regions) (339; though see negative
studies in Refs. 95, 175). Very few studies have evaluated
D1R in addiction or in animal models of addiction, and the
results are inconsistent. For example, chronic cocaine in
non-human primates has been reported to decrease D1R in
a specific subregion of the ventral striatum that encom-
passes the NAc (234), although they appear to recover after
90 days of abstinence (25), whereas neither electrophysio-
logical studies in cocaine-exposed rats (227) nor brain im-
aging of cocaine users have found changes in D1R (224),
even though the levels were predictive of cocaine intake in
cocaine users (224). On the other hand, postmortem studies
in methamphetamine users reported significant increases in
D1R in NAc (360), whereas brain imaging studies showed
no differences in D1R availability (247). These inconsisten-
cies likely reflect in part the paucity of data, differences
between methodologies (in vitro vs. in vivo measures), and
differences in species and animal models used. Moreover,
DA is a neuromodulator, so its effects are state-dependent,
which may account in part for why DA stimulation can
result in opposite effects depending on the context in which
it occurs (291).

Imaging studies have also revealed decreased activation of
brain reward regions to receipt of non-drug rewards, such
as food, sexual stimuli, or money, in individuals addicted to
drugs compared with controls (6, 33, 53, 99, 253). Such a
reduced sensitivity to non-drug rewards is likely to impair
an addicted individual’s capacity to be incentivized by nat-
urally pleasurable activities and stimuli. Intriguingly, there
is also a reduced reactivity of striatal and prefrontal regions
to negative reinforcers, which is associated with worse out-
comes (30). Decreased sensitivity to negative reinforcers
could impair the capacity of the addicted person to feel
deterred by negative outcomes (e.g., incarceration, loss of
child custody).

C. Self-Regulation

The development of the powerful cue-conditioned cravings
outlined above becomes even more deleterious when com-

Table 2. Diagnostic criteria for substance use disorder based
on DSM-5

DSM 5 SUD Criteria

1. Hazardous use
2. Social/interpersonal problem related to use
3. Neglected major roles because of use
4. Withdrawal
5. Tolerance
6. Used larger amounts/longer
7. Repeated attempts to quit/control use
8. Much time spent using
9. Physical/psychological problems related to use

10. Activities given up in order to use
11. Craving

A mild substance use disorder (SUD) is diagnosed with 2–3 criteria,
moderate with 4–5, and severe 6–7 criteria (147). DSM-5, Diag-
nostic and Statistical Manual of Mental Disorders.
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bined with growing deficits in the brain’s ability to inhibit
maladaptive behaviors and prepotent responses. This is be-
cause deficits in self-control can contribute greatly to an
individual’s inability to avoid risky or self-destructive be-
haviors, resist temptation (such as taking drugs), or delay
gratifications (such as future payoff of engaging in a long-
term recovery program), and thus increasing his/her vulner-
ability to addiction (335).

There is both preclinical and clinical evidence consistent
with the notion that the weakening of self-control mecha-
nisms correlates with impaired performance in PFC circuits
secondary to drug-induced adaptations in striatal networks
or sometimes by direct harm to PFC (320, 356). Brain im-
aging studies in humans have shown that, in the striatum,
D2Rs are positively associated with baseline metabolic ac-
tivity (marker of brain function) in frontal cortical regions
and inversely associated with the sensitivity to the reward-
ing effects of psychostimulant drugs (102, 341, 342),
whereas preclinical studies in rodents have shown that D2R
upregulation interferes with drug consumption (323, 324).
Clinical imaging studies also show that the reduced striatal
D2R seen in human addiction is associated with decreased
baseline metabolic activity in prefrontal regions including
the orbitofrontal cortex (OFC), anterior cingulate cortex
(ACC), and dorsolateral prefrontal cortex (DLPFC) (re-
viewed in Ref. 345; see also Refs. 333, 336, 340, 344). Since
OFC, ACC, and DLPFC are implicated in salience attribu-
tion, inhibitory control/emotion regulation, and decision-
making, respectively, it is reasonable to hypothesize that
faulty modulation of these regions by striatal D2R is likely
to underlie the enhanced motivational value of drugs, the
significant loss of control over drug intake among addicted
individuals (335), and the compulsive and impulsive drug
intake seen in addiction (129). Moreover, subjects at high
risk for alcoholism (positive family history) but who did not
suffer from alcoholism showed upregulation of striatal
D2R that was associated with normal baseline activity of
the OFC, ACC, and DLPFC. This finding stands in sharp
contrast to the hypoactivity seen in these same frontal re-
gions of individuals affected by alcoholism and other addic-
tions, prompting the hypothesis that striatal D2R upregu-
lation could have protected unaffected individuals against
alcoholism by regulating circuits involved in self-regulation
(340). Indeed, prospective imaging studies of brain devel-
opment are increasingly revealing that abnormalities in PFC
constitute a vulnerability risk for SUD (see sect. V) (170).

Animal studies also corroborate the presence of neuroad-
aptations in mesocortical DA synapses in the PFC as well as
in corticofugal glutamate synapses in the NAc in rodents
withdrawn from chronic cocaine exposure (173). The for-
mer appears to involve a partial decoupling between Gi�
and D2R (40), and may contribute to an exaggerated reac-
tivity towards drugs and drug-predictive cues and to a
blunted response towards natural rewards. The latter relies

on cellular adaptations leading to reduced levels of extra-
cellular glutamate in NAc (12) that might also contribute to
compulsive drug seeking.

The stimulation of D2R, through tonic DA firing (impli-
cated in motivation), without concomitant phasic firing
(implicated in associative learning) (142), can oppose drug
consumption through its modulation of PFC regions in-
volved with self-regulation (149). It is recognized that do-
paminergic signaling via D2R in the PFC modulates its
function, including inhibitory control and cognitive flexi-
bility, where D2R signaling appears to be dependent not
only on Gi but also Gs (enhancing the excitability of cortical
pyramidal neurons) (274). Indeed, optogenetic stimulation
of the prelimbic cortex in cocaine-exposed rats prevented
compulsive cocaine seeking, whereas its inhibition en-
hanced it (64). Similarly, induction of tonic activity in VTA
DA neurons, which project to infralimbic and prelimbic
PFC, reduced ethanol self-administration (17). Moreover,
the function of the PFC in addicted individuals has been
shown to predict clinical outcomes, a disrupted connectiv-
ity between PFC and striatal regions being a consistent find-
ing among individuals addicted to various drug classes
(326). The importance of PFC regulation of striatal activity
in addiction phenotype in rodents was recently shown in an
optogenetic study that showed that increased connectivity
between the OFC [presumably infralimbic PFC (192)] and
the dorsal striatum predicted compulsive self-stimulation of
VTA DA neurons despite receiving noxious electric shocks
(254). In this study, optogenetic inhibition of the OFC pro-
jecting terminals into the dorsal striatum inhibited compul-
sive self-administration. The distinct projections from the
various PFC regions to the dorsal and ventral striatum are
likely to account for why, in contrast to these findings, the
optogenetic stimulation of the prelimbic PFC decreased
compulsive cocaine consumption, whereas its inhibition in-
creased it (64). As such, the PFC has been a target of trans-
cranial magnetic stimulation (TMS) (BOX 3) and transcra-
nial direct electrical stimulation (tDCS) (BOX 4) interven-
tions for the treatment of SUD, most of which have targeted
the DLPFC. The PFC is also the target for behavioral inter-
ventions aimed at strengthening executive function and de-
creasing the incentive salience of drugs and drug cues, in
part via exposure to alternative reinforcers as a means to
facilitate and support recovery.

D. Negative Mood and Stress Reactivity

An important component of the addicted state is the behav-
ioral shift that is typically observed from seeking the reward
for its positive reinforcing value towards seeking it to avoid
negative reinforcement (338). This state, which has been
described as the “dark side” of addiction, is most evident
during acute drug withdrawal and is associated with a high
risk of relapse as a means to temporarily escape the experi-
ence of intense distress and negative emotionality (184).
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This distress is associated with reduced DA signaling in
response to rewards (anhedonia) but also with an enhanced
sensitivity of the brain’s stress system, including the ex-

tended amygdala, habenula, and hypothalamus (183, 273).
Negative emotional states have been characterized in hu-
mans during acute and protracted abstinence from all major
drugs of abuse (8), a phenomenon consistently replicated in
animal studies (reviewed in Ref. 183) that contributes to the
relapsing nature of addiction and likely also to its high
comorbidity with depression, anxiety, and suicidality (1,
276).

Similar to typical stressors, like childhood neglect (122),
acute exposure to drugs activates the hypothalamus-pitu-
itary-adrenal (HPA) axis via the corticotropin releasing fac-
tor (CRF) (reviewed in Ref. 273), which stimulates produc-
tion of ACTH in the anterior pituitary and, secondarily,
cortisol by the adrenal cortex. In turn, HPA axis activation
influences brain circuits involved in drug reward and the
acquisition of drug-seeking behavior. Stress induces rein-
statement of drug-seeking behavior in animal models of
drug consumption, exemplifying the link between reward
and stress systems (221). Molecules implicated in the regu-
lation of stress-induced reinstatement include CRF, norepi-
nephrine, DA, glutamate, dynorphin, hypocretin, neuro-
peptide Y, and others (221). These messengers act at vari-
ous sites that include the bed nucleus of the stria terminalis
(BNST), central amygdala, VTA, NAc, habenula (38, 266),
dorsal raphe, locus coeruleus, and several PFC regions
(221). CRF activation can translate an aversive event (e.g.,
social defeat, foot-shock) into robust DA increases in NAc,
which though seemingly paradoxical, reflect the fact that
CRF acts on a specific subset of DA VTA neurons (158) that
are tuned to aversive rather than rewarding stimuli (159).

E. Interoceptive Awareness

The transition from flexible, goal-directed to reflexive, com-
pulsive behaviors is also influenced by interoceptive and
exteroceptive inputs. The insula, particularly its most ante-
rior region, plays a major role in interoception through its
involvement in sensing and integrating information about
the internal physiological state (in the context of ongoing
activity) and conveying it to the ACC, ventral striatum, and
ventral medial PFC to initiate adaptive responses (256). The
bidirectional communication between the insula and these
limbic regions suggests a role in the integration of auto-
nomic and visceral information (including information con-
veyed from the vagal nerve to the nucleus tractus solitarius)
with emotive and motivational information that enables the
conscious awareness of internal urges.

The relevance of the insula to addiction first emerged with a
seminal study that showed that smokers with insular lesions
(due to stroke) were able to quit smoking with remarkable
ease, without cravings or relapse (243). Since then, multiple
imaging studies have shown differential activation of the an-
terior insula during craving for nicotine (236), cocaine (278),
and alcohol (285) and of the middle insula with cocaine and

BOX 3. TMS as a potential addiction treatment
TMS is a noninvasive technique with the potential to reduce the
long-term neurophysiological (and behavioral) changes induced
by chronic drug use. Although it is premature to judge its
effectiveness, initial results are encouraging. For example, in
one pilot study (open label), high-frequency (excitatory) TMS
delivered to the left DLPFC of patients with cocaine use disorder
led to significant reductions in cocaine use and craving (322).
Other preliminary results also support the idea that TMS could
help patients control their cravings (263, 267) and cocaine
consumption (35). The few studies exploring the use of TMS for
the treatment of methamphetamine addiction have yielded
promising but somewhat less consistent results (201, 206,
313). In addition, a recent smoking cessation trial using TMS
targeting the DLPFC and insula, bilaterally, resulted in signifi-
cantly reduced cigarette consumption and nicotine dependence
scores that acted synergistically with concomitant cue expo-
sure therapy (88). Clearly, more research and larger clinical
studies will be needed to identify the source of some conflicting
results (98), optimize TMS parameters for different indications,
and ascertain the full therapeutic potential of TMS in addiction.
However, the clear antidepressive properties of high-frequency
TMS to the left DLPFC (45, 260), and the promise of low-
frequency TMS (to OFC or supplementary motor area) for treat-
ing obsessive compulsive disorders (22), highlight its therapeu-
tic potential for addiction, which shares key nosological features
with these conditions. For these reasons, TMS has also
emerged as a promising technique to treat patients with co-
morbid SUD and other mental illnesses (73, 325, 331).

BOX 4. tDCS as a potential addiction treatment
tDCS is an alternative noninvasive brain modulation technique
with therapeutic potential whereby some (hard to assess) por-
tion of the current penetrates through the scalp affecting cor-
tical excitability. Six of seven tDCS studies found significant
reductions in alcohol-related craving or consumption after the
treatment, whereas five of eight studies found significant reduc-
tions in nicotine cravings and/or consumption (reviewed in Ref.
70). Only two proof of principle studies investigated PFC target-
ing tDCS for reducing cocaine (18, 80) and while results were
positive, the sample sizes were too small (11 and 17 subjects,
respectively) and replication is needed. Reductions in craving
were also reported in a study of 20 heroin-addicted individuals
treated with tDCS targeting the fronto-temporal-parietal area
(350). Similarly, bilateral tDCS targeting the DLPFC of meth-
amphetamine users significantly decreased craving while mod-
ulating the functional connectivity of brain networks (DMN, ex-
ecutive control, and salience) (292).

Neuroimaging studies suggest the therapeutic effects of tDCS
(as well as of TMS) could be mediated through its ability to mod-
ulate DA (69) in some of the brain areas where DA dysregulation
could lead to impaired executive function and reward (113). How-
ever, much more work is required for understanding the mecha-
nisms of action of transcranial stimulation techniques and their
potential for treating addiction, including optimization of therapeu-
tic protocols (stimulation frequency, dosing, location) and the pos-
sibility of personalized interventions based on the specific brain
circuitry dysfunction of the addicted individual.
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cigarette craving (20, 216). As such, insular reactivity has been
proposed to offer a potential biomarker for relapse risk (164)
and a target for TMS and tDCS as addiction treatments (94,
218) (BOXES 3 and 4).

The enhanced engagement of interoceptive processes in ad-
diction also recruits the default mode network (DMN),
which is also modulated by DA (242, 327). The DMN is
involved in self-awareness and mind wandering, and its
enhanced activation in the addictive state might redirect
exaggerated attention towards the internal state of craving
or discomfort. Not unexpectedly, imaging studies have re-
vealed that addiction is associated with impairment within
regions that are part of the DMN as well as between the
DMN and other functional brain networks (364). This in-
cludes studies showing disrupted activity or connectivity of
the ACC (part of the anterior DMN) and insula (202, 243).
Additionally, neuroimaging studies have also revealed al-
terations in the precuneus (increased activation to drug-
predictive cues and connectivity), a key region within the
posterior DMN involved with the internal awareness of the
perception of environmental stimuli (exteroception) and for
self-monitoring in addicted individuals (84).

V. VULNERABILITY FACTORS

Repeated exposure to a drug of abuse is a prerequisite for
the development of drug addiction, but its overt clinical
manifestation depends heavily on interacting biological, en-
vironmental, and psychosocial factors.

A. Genetics and Epigenetics

Genetic variation plays a significant role in establishing in-
terindividual differences in addiction risk. Studies focused
on variability among identical and nonidentical siblings
have produced a rough estimate of ~50% for the contribu-
tion of genetic differences to overall addiction risk. Genetic
studies have reported an overlap in genetic variants that
influence risk towards different classes of drugs (332), and
the largest study to date on 1.2 million individuals that
assessed common genes in alcohol and nicotine use has
identified genes involved with dopaminergic and glutama-
tergic neurotransmission, genes involved with transcription
and translation, and with brain development (205). They
have also revealed that an important genetic contributor to
SUDs appears to operate through a general purpose under-
lying mechanism (i.e., a shared predisposition) that influ-
ences a vulnerability for disorders characterized by patho-
logical tendencies to violate social norms or to engage in
oppositional behaviors (clustered as disorders with exter-
nalizing tendencies) (178), providing a link to the heteroge-
neous construct referred to as impulsivity (87). However,
common genetic vulnerability has also been reported for
SUD and internalizing disorders (282), providing a link for

the frequent comorbidity between SUD and anxiety and
depression (207, 268). In addition to these common genetic
factors, studies have also identified genetic variants that are
mostly specific for a given drug. Most notable are the ge-
netic variants that encode for the alcohol dehydrogenase
(ADH) and aldehyde dehydrogenase (ALDH) enzymes that
lead to impaired metabolism of alcohol and that provide
protection against alcoholism (74).

Multiple genome-wide association studies (GWAS) have
identified genetic variants associated with specific drug ad-
dictions (28, 143, 279) (see Supplemental Table 1; https://
github.com/rubenbaler/PRV-00014-2018R1/blob/master/
ST.1.docx). However, like other complex biobehavioral
disorders, addiction is a polygenic disease likely hinging on
multiple genes and genetic networks (205, 229). Addiction-
associated gene variants can impact the risk of abuse and
addiction via direct or indirect influences on neurotransmit-
ter systems, drug metabolic pathways, neural circuitry, cel-
lular physiology, brain development, and personalities and
traits (e.g., novelty seeking, impulsivity) that influence the
behavioral responses to environmental stimuli. Although
genetic research of addiction has not yet translated into
novel therapeutics for SUD (105, 199, 261), there has been
steady progress towards the identification of genetic bio-
markers with translational potential for nicotine addiction
(21, 29) and opioid use disorders (OUD) (32). Because ge-
netic background can dramatically alter the phenotypic ex-
pressivity of different sets of genes, studies are needed to
tease out modifier loci in diverse populations and the epige-
netic modifications regulating them (104, 261, 264). More-
over, genetic findings offer clues as to which molecular net-
works might underlie the associations with addiction, thus
expanding the array of potential targets for therapeutics
development. This, coupled with systems biology analyses
that examine Gene � Gene, Gene � Environment, and
Gene � Environment � Development interactions are
promising future strategies for therapeutics development
and for identification of biomarkers.

Genetic studies have helped advance our understanding of
the neurobiological processes involved in addiction. For
example, the finding that a polymorphism in the �5 nico-
tinic receptor is associated with an increased risk of nicotine
addiction triggered attention to the role of the habenula,
which displays a substantial concentration of �5 nicotinic
receptors (197) and also of MOR (118). This has revealed
that the habenula is not only implicated in nicotine addic-
tion but that it also participates in the negative affective
states associated with the chronic use of various drugs of
abuse, including alcohol (174) and opioids (222).

Our expanded understanding of how epigenetic modifica-
tions regulate the enhancement or silencing of gene expres-
sion has also led to studies that are beginning to character-
ize the effects of drugs on epigenetic marks in various brain
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regions as well as their involvement in the addiction process
(261, 347). Arguably, much of the information comes from
studies focused on the effects of repeated cocaine exposure
on DNA methylation and posttranslational modifications
of histone proteins that regulate the accessibility of DNA to
the transcription machinery via a dynamic process of chro-
matin remodeling. For example, systemic administration of
sodium butyrate, a general histone deacetylase (HDAC) in-
hibitor, facilitates extinction of a previously established co-
caine-conditioned place preference in a mouse model of
addiction (219). This result is consistent with previous stud-
ies showing that some of the behavioral effects of chronic
cocaine are associated with the recruitment of HDACs to
reduce histone acetylation and gene activity (270). Some of
the drug effects in the modulation of gene expression are
rather generalized, while others are gene and/or paradigm
specific. For example, in the striatum, hyperacetylation of
H4 at specific chromatin locations along the cFos gene pro-
moter (with its concurrent transcriptional activation) oc-
curs after acute but not chronic cocaine administration. In
contrast, hyperacetylation of H3 at the Bdnf and Cdk5
promoters (with their concurrent transcriptional activa-
tion) is seen after chronic but not acute cocaine. Interest-
ingly, the levels of H4 and H3 acetylation were found to
increase in the NAc shell (not the core) after chronic but not
acute cocaine self-administration (190). Epigenetic changes
appear to contribute to different components of the addic-
tion trajectory that might serve to uncover new candidates
for medications development. Any targeted manipulation
of epigenetic marks for therapeutic purposes, however, is
presently a distant and challenging prospect.

B. Development

The transition from initial drug exposure to repeated use
and subsequently to addiction depends, to a considerable
extent, on age and developmental stage. While drug expo-
sure alters brain function, the outcomes of that interaction
change as a function of ongoing developmental and aging
processes (126, 150). Certain ages and developmental peri-
ods (e.g., fetal, childhood, and adolescence) are character-
ized by broader or more rapid changes than others and,
accordingly, exposure to drugs or adverse environmental
stimuli during such critical time windows can have dire
consequences for normal brain development and addiction
vulnerability. A critical factor in the susceptibility of ado-
lescents to risky behaviors, including drug-taking, pertains
to the fact that PFC circuitry, which is necessary for self-
regulation, is not fully developed until early adulthood
(127). The neurobiological underpinnings of this critical
transition are not fully understood, but an outline of signif-
icant and malleable events during brain development is be-
ginning to emerge.

For example, the protracted period encompassing child-
hood and adolescence is characterized by increases in white

matter volume and organization (195), while cortical gray
matter shows a bimodal curve, increasing in volume until
the onset of adolescence and then starting to decrease again
(127). Brain maturation is also associated with an increased
ability to synchronize neural oscillations in several fre-
quency bands (329), and the trajectories of these processes
are predictive of brain performance and cognitive abilities
(83, 179, 329). Drugs of abuse can perturb these processes,
an effect that has been most widely investigated in associa-
tion with alcohol (139, 307) and cannabis (19, 100, 302)
use. Delays in maturation of PFC networks due to drug
exposures, genetics, or social deprivation appear to increase
risky behaviors in adolescents (including drug-taking). In-
deed, brain imaging studies in adolescents have begun to
associate abnormalities in PFC function and structure with
a higher risk for SUD, consistent with the role of PFC in
self-regulation and its disruption as a factor contributing to
vulnerability for drug use (170, 216).

C. Social Environment

Epidemiological studies have consistently recognized that
environments with a high level of social stressors and poor
social support (16, 48, 50, 330) along with easy accessibil-
ity to drugs (115, 124, 125) and lack of alternative reinforc-
ers (180) lead to an elevated risk for drug experimentation
and addiction. Neuroscientific studies have started to unveil
how adverse social environments and lack of opportunities
affect the human brain (46) and why early developmental
stages may be the most sensitive to such detrimental influ-
ences. It is now recognized that brain development is influ-
enced not just by genetic factors but also by environmental
exposures (81, 181, 303). Adverse social environments dur-
ing early childhood have been consistently associated with
delayed maturation of prefrontal-limbic connectivity (133).
For example, children with a history of early adversity dis-
play atypical coupling between amygdala and medial PFC.
This abnormal connectivity pattern is partly driven by the
actions of the stress hormone cortisol (121) and likely con-
tributes to increased impulsivity (101) and SUD risk (233).
The type of persistent social stress that can be triggered by
having a subordinate rank among non-human primates
(237) or by having poor social support systems in humans
(355) has been associated with reduced striatal D2R expres-
sion and linked to higher risk for impulsivity and drug use
(223, 237, 355). And, as already mentioned, easy access to
drugs is an essential contributor to early drug experimentation
and repeated consumption (115, 124, 125). Results of both
animal (55, 288) and human (60, 309) studies provide com-
pelling evidence that when exposure to drugs occurs during
childhood or adolescence it can interfere with developmental
brain trajectories, thus exacerbating adverse outcomes (72).

To better ascertain the effects of early drug exposure and
the social environment upon developmental brain trajecto-
ries, National Institute on Drug Abuse and National Insti-
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tute on Alcohol Abuse and Alcoholism, together with other
institutes at the National Institutes of Health, recently
launched the Adolescent Brain Cognitive Development
(ABCD) study, which will follow over 10,000 youth in the
United States as they transition from childhood to adoles-
cence to adulthood, while monitoring their physical and
mental health, neurocognition, social environment, sub-
stance use, genetic and other biomarkers, and their struc-
tural and functional brain development (167).

VI. CLINICAL IMPLICATIONS

A. Prevention

Evidence suggests that prevention of SUDs must include
universal components (TABLE 3), including the enhance-
ment of protective factors (e.g., parental support, educa-
tion) and reverse or reduce risk factors (e.g., deviant behav-
ior, drug abusing peers, social neglect) (10, 148) and should
address all forms of drug misuse, including underage use of
legal (e.g., tobacco or alcohol), prescription (e.g., stimulant
medications), and illicit (230) drugs. Such programs can be
implemented in the family, school, and/or community envi-
ronments.

In addition, tailored prevention interventions should ad-
dress the specific circumstances of those at higher risk, in-
cluding people suffering from other mental illnesses or
specific disadvantaged conditions. The strengthening of
self-control is one example of a promising tailored individ-
ual-based intervention. When assessed early in life, poor
self-control is a personal characteristic predictive of higher
vulnerability for SUD as well as worse physical health,
lower economic wealth, and greater criminal involvement
(233). Importantly, various training approaches have been
identified that can help enhance self-control and other di-
mensions of executive function when implemented among
school-aged children; their usefulness when applied to
adults, however, is unclear (116). Effective approaches in-
clude enhanced social-emotional and language-literacy pro-
grams (283), music education (165), and specific sports pro-

grams designed to build individual competences and pro-
mote enjoyment (162). A recent summary report paints a
promising picture vis á vis the benefits of such interventions
for improving self-control circuitry and function as a uni-
versal prevention strategy (241). Another promising pre-
vention intervention is the use of mindfulness training to
improve self-control, emotional regulation, and stress reac-
tivity, which could also be harnessed for therapeutic pur-
poses (see Ref. 321 and below). An exciting development in
prevention research is the recent report that positive parent-
ing (i.e., enhanced supportive parenting style) can overcome
the negative effects of childhood poverty on brain develop-
ment (43). This intervention, a randomized trial of the
“Strong African American Families” program among par-
ents and their 11-yr-old children blunted the reductions in
specific brain volumes (e.g., left dentate gyrus and CA3
hippocampal subfields and left amygdala) previously asso-
ciated with childhood poverty (212). This result suggests
that enhanced early caregiving (like supportive parenting)
could help buffer some of the detrimental effects of adverse
social environments (43).

Several studies have also shown that it is possible to target
abnormal stress reactivity in children impacted by early
adversity and mitigate its impact. For example, studies of
children at developmental risk (e.g., in foster care, mal-
treated, or who suffered parental depression or death) con-
sistently show that psychosocial interventions (e.g., en-
riched environment, caregiver/parental training) can lower
cortisol levels towards the range seen in a low-risk compar-
ison group (304). Similarly, compared with institutional
care as usual, high-quality foster care had a positive impact
on the integrity of several white matter tracts (27), including
those in the external capsule and corpus callosum, whose
abnormalities had been associated with neglect-associated
emergence of internalizing symptoms in middle childhood
or early adolescence (26).

B. Treatment

Medications approved for the treatment of SUD are limited
to opioid, nicotine, and alcohol use disorders (TABLE 4).

Table 3. Prevention matrix

Risk Factors Domain Protective Factors Reference Nos.

Early aggressive behavior, dysregulated stress response,
positive attitudes toward substance use, genetic risk,
psychiatric disorder

Individual Social competence, self-regulatory skills,
school readiness, supportive
parenting

41, 61, 135, 137,
233, 257, 258,
301

Harsh or absent parenting Family Positive parenting 42, 248
Antisocial influence Peer Positive peer networks 305
Poor classroom management, poor control of drug

availability
School Positive school environment, teacher

behavior management competence
20, 110, 177,

191
Laws, policies, and perceived norms for substance use Community Community-level strategies to prevent

substance use
44, 141
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There are several promising candidates for the treatment of
stimulant and OUD that are undergoing clinical trials (see
Supplementary TABLE 2; https://github.com/rubenbaler/
PRV-00014-2018R1/blob/master/ST.2.docx), although for
the most part research is still at the preclinical stages. On the
other hand, the characterization of the various neuronal
circuits disrupted in addiction identifies them as suitable
targets for personalized interventions. For example,
strengthening of self-control fronto-cortical circuitry might
help prevent relapse (130, 320). The amygdala/hippocam-
pus (mediating emotions, mood, and stress reactivity) and
the insula (responsible for integrating and translating in-
teroceptive signals) are also relevant as targets for addiction
treatment (246, 339).

These could be translated into the next generation of non-
medication-based interventions (i.e., targeted behavioral
training, noninvasive modulation) designed to increase the
effectiveness of control networks as a way to treat addic-
tion, even among those without intention to quit (320). By
the same token, TMS or tDCS could prove helpful in reduc-
ing craving by modulating insular activity (BOXES 3 and
4). Finally, there is experimental evidence suggesting that
mindfulness-based techniques may positively impact cogni-
tive processes (319) and mitigate addictive behaviors (97,
200, 321, 358). Indeed, preliminary imaging data showing
that mindfulness activated the amygdala, striatum, ACC,
PFC, and insula, which are regions that modulate emotion,
self-regulation, and interoception, highlight its potential
promise in addiction treatment (319).

VII. CONCLUSIONS

Significant advances in neuroscience have given us an un-
derstanding of the effects of drugs in the brain that result in
addiction, which have led to the recognition that addiction
is a chronic brain disorder that should be treated as done for
any other medical condition. Similarly, our increased un-
derstanding of the neurobiological processes that are asso-
ciated with vulnerability for drug experimentation and
SUD, including the effects of exposure to adverse environ-
mental conditions, is helping redefine our thinking around
tailored prevention interventions for at-risk individuals.
However, much work is still needed to capture the complex-
ity of the effects of drugs and other rewards in our brains, to
understand how they interact, and how they ultimately mo-
tivate behavior.
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